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Linear o p t W  regulator theory is applied t o  a nonlinear simulation 

of a transport aircraft performing a helical landiag approach. 

forn expressim f o r  the quasi-steady nominal f l igh t  path is presen ted  

along with the m e t h o d  for d e t e d n i a g  t h e  correspondiag constant w o i n a l  

control  inputs. The Jacobian matrices and the veighting matrices i n  the 

cost functional are t i m e  varying. 

feedback gaiis is r e v i e w .  The control system is tested on several 

a l t e rna t ive  landing approaches using both three and six degree iligat 

path angles. On each landing approach, the a i r c r a f t  vas subJected t o  

l a rge  random i n i t i a l  state errors and t o  rand- directed crosswinds. 

The system vas also tested for s e n s i t i v i t y  to changes i n  the parameters 

of the  a i r c r a f t  and of the atmosphere. 

cont ro l le r  on a l l  the three degree apprcaches vas very good, and the 

cont ro l  system proved to be reasonably insens i t ive  t o  parametric uncer- 

t a i n t i e s .  It did not perform as w e l l  on t he  six degree approaches, and 

a modification t o  these f l i g h t  paths is proposed f o r  the purpose of 

improving performance. 

A closed 

A method of solving for  t he  optimal 

Performance of t h e  optimal 
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INTRODUCTION 

Aircraf t  t r a f f i c  i n  t h e  neighborhood of commercial airports 

has been t h e  subject of intensive study during t h e  past several  

years. Noise, c o l l i s i o n  avoidance, a i rspace congestion, air 

pol lut ion,  and dangerous w i n g  t i p  vo r t i ce s  are all problems vhich 

are being studied by engineers today. 

c r a f t  are t y p i c a l l y  sequenced t o  follow one another down 8 t h ree  

degree f l i g h t  path on a s t ra ight- in  approach t o  t h e  runway. This 

path very o f t en  r e s u l t s  i n  low a l t i t u d e  f lying a t  r e l a t i v e l y  high 

power se t t i ngs  over r e s i d e n t i a l  o r  densely populsted business 

d i s t r i c t s  which is objectionable,  a t  least from a noise standpoint 

i f  not from t h e  standpoint of safety.  Recently, steeper, s i x  

degree f l i g h t  paths and two segment approaches (Ref. 12) have been 

proposed to  eliminate these problems and are current ly  being t e s t ed .  

This paper proposes an a l t e rna t ive  t o  these landing approaches. 

cons i s t s  of descent cilong a h e l i c a l  path t o  a low a l t i t u d e  where 

t h e  s t r a igh t - in  approach is  intercepted and folloued. This f l i g h t  

path has the advantage of keeping t h e  a i r c r a f t  at low power and a t  

r e l a t i v e l y  high a l t i t u d e  except i n  t h e  i m e d i a t e  area of t h e  a i rpo r t .  

The h e l i c a l  path is quasi-steady i n  t h a t  t he  f l i g h t  path angle and 

ve loc i ty  are maintained constant during descent and the  control 

inputs are fixed except t o  n u l l  f l i g h t  path errors. 

I n  t h e  present scheme, air- 

It 

1 
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Implementation of t h e  proposed automatic &dance system 

requires  two f ac to r s  which are not a t  present universal ly  avai lable .  

The two fac to r s  are an on-board f l i g h t  control computer and a 

f a i r l y  precise  knowledge of t h e  aircraft 's pos i t i on  i n  space. 

However, with t h e  advent of automatic landing systems, f l i g h t  

computers are becoming much more common on commercial t r anspor t s  

and t h e  current i n s t a l l a t i o n  of t h e  microwave landing system (US) 

equipment at a i r p o r t s  throughout t h e  country will make t h e  necessary 

posi t ion data avai lable  (Ref. 1 2 ) .  

The method proposed i n  t h i s  paper uses the theory of optimum 

control  which is t r ea t ed  i n  references 1 through 5. 

applied t o  a three degree of freedom nonlinear a i r c r a f t  simulation. 

In  order t o  pose t h e  problem as a l i n e a r  regulator ,  t h e  equations 

were l inea r i zed  about a nominal state ( h e l j c a l  path) and control  

t r a j ec to ry .  

then t e s t e d  i n  t h e  nonlinear model. This work is an extension 02 

t h a t  presented i n  references 6 and 8. 

increasing t h e  number of states t o  s i x  and t h e  number of controls  t o  

three. The addi t ional  states removes t h e  r e s t r i c t i o n  t h a t  a l t i t u d e  

be monotonically deoreasing and the  inclusion of t h r u s t ,  au to th ro t t l e ,  

as a control ,  al lows treatment of a i r c r a f t  other than gliders. 

Reference 6 concerns I tself  with a HL-10 l i f t i n g  body reentry vehicle  

and reference 8 with an unpowered be ing  707 with no external  wind 

The theory is 

The r e su l t i ng  near optimum feedback control  gains  were 

The extension includes 
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disturbances. Another extension of t h i s  work is inclusion of t h e  

quasi-steady h e l i c a l  path w i t h  i t s  consequent piecewise constant 

control inputs.  

storage of' t h e  state and control  t r a j e c t o r i e s .  

camputing these  quasi-steady paths along wit. t h e  method for 

computing appropriate control  inputs  a r e  presented here. 

a der ivat ion of t h e  equations of motion i s  given, along with t h e  

method of solving f o r  t h e  near optimum feedback gains. 

noted t h p t  t h i s  study, as do references 6 and 8, uses -le o f  a t t ack  

and bank angle as control inputs.  This i s  a s implif ic i - ion of t h e  

dynamic model which does not include control surfaces such as 

elevators ,  a i l e rons ,  o r  rudder. 

This f a c t o r  g rea t ly  reduces the  problem of camputer 

The method f o r  

In  addi t ion,  

It should be 

Feedback gains were obtained for several  candidate approach 

paths including both th ree  and six degree f l jg l i t  path angles and tu rns  

of 180, 270, and 360 degrees. 

path studied, i.e. one i n  which t h e  a i r c r a f t  crossed over t h e  runway 

a t  a ninety degree angle heading east at an a l t i t u d e  of 550 meters. 

A t  about 1800 meters east of t h e  runway center l i n e  it intercepted 

t h e  h e l i x  and descended down i t ,  making a t o t a l  t u rn ,  t o  t h e  r i g h t ,  

c f  270 degrees. 

where the a i r c r a f t  intercepted t h e  s t ia ight- in  approach. A t  t h i s  

time, it was about 1900 meters from t h e  touchdown point on t h e  runway. 

An overhead approach was t h e  p r inc ipa l  

The turn Wac completed a t  an a l t i t u d e  bf' 100 meters 

The plane continued t o  descend u n t i l ,  at tvelve meter a l t i t u d e ,  it 



executed I flare mneuver. 

vas tested in tbe noalincv simulation 

Tk- effectivtet.8 of the comtrol system 

introdur- in i t ia l  errors 

i n  the states, crossuinds, .Id uncertainties i n  the - cs 

of the  aircraft. 

Fhe aircraft treated in the st\rdp is a ?3?-1C%, vhich is 

a trJ engintd 

haul flwts. 
these aircr8f't f x u ~  Boeing and it is beiw used to 

adrurced -tic cadrol aad avionics concepts in the neighborhood 

of the air tewinil. 

sbv feas ib i l i ty ,  it is hoped that thcg vi11 be applied first to a 

more sophisticated s ix  degree of freedom sirnilation of the aircraft, 

aad then wentually to be tester? on the aircraft itself. 

cgwrci i l  traasport used for r c l r t i w e l ~  ohcrt 

Langley Research Center bas recently promred ~ i a c  of 

.pd test 

yhereas the results presented in this paper 



I t i t rPdur t ia i  

The purpose of this sec t ion  is to present  t h e  mathemtics 

involved in s i n l r t i n g  the aircraft and in irplakcnt~ tat feedbeck 

control law. &the that i n  f-e 1, the aircraft is modeled by a 

set of s i r  malines ordinary d i f f e r e n t i a l  equations represcntcd by 

. --- - X = f(x,u,t) (1 I 

%his set of eqmtions uas intqgrated n w i c a l l y  usips a fixed step 

foppth order Runge l lutta algorithm- The feedback con- 1.v used 

in this st?ldy requires that t h e  mid state traJectorie8, gn, 
the norind camtml time histories, un, azld t h e  feedback gain 

a r t r i x ,  K, be s tored in 81i on-5oard capputer. Eowever, it vill be 

- 

shun that by choosing par t i cu la r  nominal t r a j e c t o r i e s ,  the vector 

$ chslrgcs only tvice, and the vector 

Snrl-ytic vector function of t i m e .  

is a simply computed 

This eliminates some of the 

on-board storage nquircaents and makes t he  cor&xol systan simpler 

and more f lex ib le .  

As simulated, t h e  aircraft has s i x  state variables and three 

5 
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Figure 1.- Schematic Diagram of Aircraft  Landing 
S imu 1 a t  ion. 
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The state vector is made up of t h e  var iab les  x, y, and z 

descr ibing t h e  aircraft's posi t ion;  V, its veloci ty;  y, its 

f l i g h t  path angle; and JI, i t s  t rack  angle. The cont ro l  vector 

u is made up of t h e  angle of a t t ack ,  a; the r o l l  angle, 4; and t h e  
- 

ratio of engine thrcst t o  airc-ft  mass, T/m. 

vectors  & aud xu, shown i n  f igure  1, are defined as 

The two per turbat ion 

- -  
h = x - x n  

6 u = u - u n  
- - -  

However, i n  prac t ice ,  & is computed as: 

= MT (2) 

where K is a 3x6 time varying gair. matrix. T h i s  gai. t a t r i x  is t h e  

solut ion of t h e  regulator  problem which results from l i nea r i z ing  

equation I about t h e  nominal f l ight path and cont ro l  vector ,  and it 

is precomputed f o r  a particular nominal f l i g h t  path. This 

l i nea r i za t ion  yields:  
e - 
6x = A(t)xx + B ( t ) &  [A(t)+B(t)K(t)]rx (3) 

a? - -  - -  aF where A(t)  = evaluated at x = x and u = u and B(t) = n n 
- -  - -  

evaluates a t  x = x and u 

matrix. 

u A is  a 6x6 matrix and B is a 6x3 n n' 
A statement of t h e  regula tor  problem is then t o  find K in 

equations 2 and 3 which minimizes deviat ions of t h e  states fran 

t h e i r  nominal -ralues by using cont ro ls  which s t a y  within acceptable 

limits. More foraslly, t he  problem is t o  determine K which 

minimizes t h e  quadrat ic  performance index J given by 

f l  
0 

subJect t o  t h e  conat re in ts  of equation ( 3 ) .  

matrices. 

M, 0, and R me weighting 



Ecluat ions of Mot ion 

The i n e r t i a l  cutes system (x, y,  z )  has its o r ig in  at the 

ies i red  touchdown p o i n t  on t h e  runway. The x axis is parallel t o  

t he  runww and is pos i t ive  i n  the d i rec t ion  of landing. The y axis 

is horizontal ,  perpindicular t o  the x a x i s  and is pos i t ive  t o  ++he 

r igh t .  The v e r t i c a l  z a x i s  i s  perpindicular t o  both x and y ,  and 

is pos i t ive  downward. The a i r c r a f t  i s  t r ea t ed  as a point  -6, 

subject t o  t he  forces  of  gravi ty ,  engine t h r u s t ,  and 8-c 

l i f t  and drag. The ro ta t ing  a x i s  system associated w i t h  t h e  a i r c ra f t  

is chosen such that its x axis is always d i n e d  with the  a i r c r a f t ' s  

veloci ty  vcctor.  hro N e r  angle transformations relate the 

i n e r t i a l  ax is  system t o  the ro t a t ing  axis system. They are 

0 1  

cos y 0 sin y 

- s i n  y 0 cos y 
1 

T!ie-.e ro t a t ions  are shown i n  Figure 2. This axes system does not 

roll with t i -  E;ircraft. Therefore, t he  y body ax i s  remains 

horizc-.*+cd and the z body ax i s  s tays  i n  a v e r t i c a l  plane w i t h  t h e  

v e L c i t y  vector. The ro t a t ion  vector resolved along t h e  ro ta t ing  

a e s  system is 

3 = [JI s i n  y, 0;. 4 cos ylT 

and the  r e loc i ty  vector is  
- v = [v 0 oIT 
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Figure 2.- Rotating Axis System. 
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The forces ac t ing  on the  a i r c r a f t  resolved a l o n g  t h e  r o t a t i n g  axes are 

Drag = [-D 0 0lT 

Thrust = [Tcosa 0 -Tsina] 

Gravity = T T [O 0 mgIT 

L i f t  = T+ [O 0 -LIT 

T 

Y J ,  

0 cos @ -sin 4 
0 s i n  0 cos " I  I$ 

where T4 = 1 0 I 
The l i f t  fo rce  is perpendicular t o  t h e  veloci ty  and rolls v i th  t h e  

aircraft. The transformation T resolves t h i s  force along t h e  y and 

z r o t a t i n g  axes. The angle of  a t t a c k ,  a, is  defined as t h e  angle be- 

tween t h e  ve i cc i ty  vector and t h e  x body axis of t h e  a i r c r a f t .  The 

dynamics of t h e  a i r c r a f t  are then described by equating t h e  change i n  

l i n e a r  momentum t o  t h e  sum of t h e  applied forces  

Q 

--- 
m ( V + w V )  = Dreg + Thrust + Gravity + L i f t  

or 

-Tsim 

To f a c i l i t a t e  integrat ion of these equations, they are n i t t e n  with 

t h e  de r ivs t ive  of t h e  states V ,  9 ,  and y on t h e  l e f t  hand s ide .  

These t h r e e  equations are combined wi th  t h r e e  kinematic r e l a t ions  

which resolve the  veloci ty  along t h e  x ,  y, and z i n e r t i a l  ax i s  

The six equations of  state are then 
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x = v cos y cos JI 

= v cos y sin JI 

z = V sin y 

i = -D/m + (T/m)cosor + g sin y 

= -(T/mV)sina + (g/V)cosy-(L/mV)cost$ 

4 = Lsin+/ (mvcosy 

Equation 5 is the expanded form of equation 1. 

( 5 )  

Aerodynamics and Aircraft Parameters 

The aircraft simulated in this study is a Boeing 737-100 whick. 

is a small tvo-engined transport airplane designed primarily to 

operate from shcrt runways over relatively short distances. It is 

described in references 9 and 10. 

and drag forces are 

The equations for the lift 

L = q S C L  

D = q S C D  

where C and C are the coefficients of lift and drag, respectively; L D 
S is the wing reference area; and q is dynamic pressure. CL, CD, and 

q are defined as 

and q =  1/2 p$ 

The assumption of a parabolic drag polar where the induced drag is a 

quadratic function of the lift coefficient is not restrictive for the range 

of speed and angle of attack employed in this study. 
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A i r  densi ty ,  p, vas approximated by 

reference 8. 

t h e  following equation taken from 

p = 1.22[1. -( 2 . 2 5 7 ~ 1 0 - ~ ) h ]  4.255 

This proved t o  be a very good approximation t o  t h e  standard 

atmospheric density of reference 7. 

t h e  landing gear d o n  and the  f l aps  deployed a t  40 degrees. 

parameters of equation 6 (C , a0- CD , and q )  were chosen t o  fit 

da ta  on C and C provided by B e i n g  f o r  t h i s  configuration. The L D 

paramete:.s of t he  a i r c r a f t  are l i s t e d  i n  Table 1. 

The airplane vas configured with 

The 

0 

Nminal Flight Paths 

The nominal path can be chosen q u i t e  a r b i t r a r i l y  nen applying 

t h e  l i n e a r  regulator  method t o  t h e  a i r c r a f t  landing problem. 

p r a c t i c a l  considerations lead one i n t o  choosing a p a r t i c u l a r  class of 

f l i g h t  paths. 

t r anspor t s  is the  3' nondecelerating s t ra ight- in  approach. 

t h e  p i l o t  l i n e s  up with the  runway and then descends at constant veloci ty  

along an equilibrium path which i n t e r s e c t s  t h e  horizontal  a t  an angle 

of 3 O .  The control inputs are nearly constant varying only t o  o f f s e t  

atmospheric disturbances. A mathematical descr ipt ion of t h i s  path is 

However, 

The most cornon approach used today on coarmercial 

That is, 

b - 
x = [ ~ ~ c o s y ~  0. vosinyo o o olT 

x(0) = [xo 0 Zo vo Yo oIT 

A t  approximately 12 meters a l t i t u d e ,  t h e  a i r c r a f t  leaves t h i s  quasi- 

steady condition and f l a r e s  i n  order t o  touch down more emothly.  This  
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SYMBOL - VALUE PARAMETER DEFINITIOH 

C 7.162 L i p t  c w e  slope 

OO 

La 
-10. bo Angle of attack for zero lift 

.15? Drag coefficient for zero lie 

rl .031b Efficiency factor 

S 91.04 M2 Aerodynamic reference are8 

m 40,823. Q. Mess of vehicle 

TABLE 1 - Characteristics of the 737-100 (Gear Down-Flap8 at 40°) 



path calls f o r  constant control  inputs and because of its simplici ty ,  

it requires  very l i t t l e  storage.  If t h e  nominal path had been chosen 

arbi t rar i ly ,  t he  s i x  states and three controls  would have had t o  

have beer, s tored f o r  many points along t h e  path. 

I n  order t o  r e l i e v e  airport noise problems and t o  decrease 

t ra f f ic  congestion i n  the  neighborhood of Lhe a i r p o r t ,  various other 

approaches have been proposed and are being t e s t ed .  

t h e  s teeper  6' nondecelerating s t ra ight- in  approach and a combination 

of t he  6' and 3 O  approach. 

quasi-steady h e l i c a l  approach. 

a i r c r a f t  are spec,al cases of t h i s  general izat ion.  

nominal path i s  descent along a he l ix  from some i n i t i a l  alti?ude. 

The cen te r l ine  of the runway i s  tangent t o  t h e  h e l i x  and at  some 

specified lower a l t i t u d e ,  t h e  a i r c r a f t  follows this tangent i n t o  a 

s t ra ight- in  approach. 

density is constant over t h e  range of a l t i t u d e  considered, t h i s  path 

c a l l s  f o r  f ixed controls  during the h e l i c a l  descent, and f ixed but 

d i f f e r e n t  control  inputs  during t h e  s t r a igh t - in  portion. 

var ia t ion i n  atmospheric densi ty  i n  t h i s  range of  a l t i t u d e  is  about 

four percent. 

calculat ions of nominal path,  nominal control  inputs,  and feedback 

gains. During the  simulated f l i g h t s ,  using the closed loop control  

system, atmospheric density is allowed t o  vary according t o  equation 

7. 

t h e  control  system as though it were an external  disturbance. 

formal descr ipt ion of t h e  nominal path is 

These include 

The method prop< zd i n  t h i s  paper is  a 

AU other  quasi-steady motions of an 

That is, the 

By making t h e  assmpt ion  that atmospheric 

The 

The assumption of constant densi ty  is made during 

The s m a l l  e r ro r  introduced by t h i s  assumption was nulled out by 

A more 



- 
x =  

- 
VocoeyocosJ 

vosi "Yo 
VocosyosinJ 

0 
0 

- 60 

for t h e  a l t i t u d e  range 

-zSI h 5 -z0 

where -zsI is t h e  a l t i t u d e  a t  which the  a i r c r a f t  r o l l s  i n t o  the  

s t ra ight - in  approach. 

chosen with same degree of l a t i t u d e  and they e s sen t i a l ly  determine 

The parameters zo, zsI, Vo, yo, and JIo a r e  

e 

t he  nominal f l i g h t  path. 

are functions of t h e  f i r s t  f i v e  and a r e  chosen such that x, y ,  and JI 

The last  three parameters, xo, yo, and $o 

The subscr ipt  SI vi11 be 

Because t h e  

SI - have the  desired values when z equals z 

used t o  specify t h e  value of a state when z equals zsI. 

or ig in  of t he  axes system is a t  t he  touchdown point on t h e  r u n w a y ,  

t he  desired values of $J,, and ysI are zero. In  order t o  determine 

x it is necessary t o  look a t  the nominal path after it start8 the  SI' 
s t ra ight - in  approach. Its descr ip t ion  is  

During This p a r t  of t h e  flight and are constant and consequently, 

dx dx dz 
dz d t  
- = - 1 dt = cotyo 

is constant. In  order t o  touch down at the  o r ig in ,  
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dx 
xsI - dz 

(10) 
XSI = Z S I / t W 0  

0 

Also, during t h e  h e l i c a l  descent, the  rate of t u r n ,  JI, and t h e  rate 

of descent, z ,  w e  constant. In order t o  have t h e  a i r c r e f t  f l y ing  

i n  the  correct  d i r ec t ion  ($=O) when z equals zsI, it is necessary 

tha t  

27 l4  
0 

dz z s p 0  

and since 

&-a!& - 
dt dz d t  

it follows t h a t  

The axis of the he l ix  i s  v e r t i c a l  a t  

(x ,Y)  = (xsI,r)  

where ;he -adius r i s  given by 

r l . /( tanYo 

(11) 

(13) 

and tkrough geometrical considerations 

x = x + r s i n  9, (14) 

yo = r ( l -cos  J, ) 

0 SI 

(15 

Let the landing 

0 

A short exexnple may c l a r i f y  these computations. 

d i r ec t ion  be north,  (PO), and the a i r c r a f t ' s  o r ig ina l  heading be 

ebst, ($o$)- The ve loc i ty  is 62 mcters/second and t h e  f l i g h t  path 

angle is 3', Initial a l t i t u d e  is 450 m. The a i r c r a f t  descends 
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along a hel ical  path t o  50 m .  altitude and then down a 

straight path t o  the rmway. In th i s  example, 

z = -450 m., 2 = -50 m., Vo = 62 m./sec 
0 SI 
-3.rr 'TI 
- 180 ' *o = - 2 

60 - - &!k dz dz d t  = (&)(62)sin % = .038 rad/sec 

Integration of equation (8) gives the following state 

trajectories along the hel ix .  

. .  
xO 

YO 

vO 

YO 

0 
2 

!? 

+ (16) 

Likewise ,  integration of equation ( 9 )  yields the state  trajectaries 

along the straight portion of the f l ight  path 
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0 
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SI 2 

Y 
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+ 
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vocosr,(t-ts11 

0 

vosinv9(t-tSI 1 

0 

0 

0 

The tine for the vinqp level wmeuver, tSI. is given by 

In sumwu-y, the need to ictegrate and store the equations of 

=tion for the &nat p t h  has eliminated. Given a particular 

iow. parameter set, iZ07 zsI, vO9 yo, eel, eq-ations (16) and (17) 
yield the value of the states at ary time. 

[%I, Go, xo, yo. tsI], necessaq to evaluate equations (16) and 

(17) are given as functions of the input parameters by equations (10) 

through (15) and quation (18). 

Five secondary parameters, 

Ikoinal Control Inputs 

After specifying this particular class of ncpinal flight paths, 

it is necessary to make their equations of motion which are given by 

equations ( 8 )  and (91,  agree with the equations of motion for an 

arbitrary path vhich are given by equation ( 5 ) .  

by cboosing the correct open loop z .irol vector, u. 

This is accomplished 

Because the 
- 
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path is 1-i-steady, that is, 

t = ; = o  

- 
IJ is a coaszant vector on the s p i r a l  and a second constant on t h e  

straight-in portion. In order to make equation ( 5 )  agree with 

equation (a), the folloving equations must be satisfied. 

In these equations, 

and CL and C 

constant air density discussed earlier, an intermediate value of 

are defiled in equation (6). U s i n g  the assumption of D 

altitude, %, is chosen, and 0 

That is, 

is computed using equation (7). N 

4.255 pN = 1.22 [l . -! 2.257~lO-’ 1% 1 

The open loop control, ;T, 
T - 

u = [u, (0, T/m] 

which is the solution of equation (191, is not unique and these 

equations have no closed form solutioc. Equation (19) is of 
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the form 
- -  
f l ( U )  = 0 

and it w a s  solved by the levton-Raphson i t e r a t i v e  method described 

i n  reference 11. This method usual ly  requi res  the Jacobian matrix 

which is given by 

0 

The poss ib i l i t y  a l w a y s  exists that t h i s  algorithm w i l l  converge 
- 

t o  an undesirable value of u. Physical ly ,  the s m a l A r r  value of angle of 

a t t ack  is desired. 'R'is corres2onds t o  t he  low side of t he  l i f t / d r a g  

curve. Therefore, t h e  so lu t ion  must be examined subject ively before 

being accepted. 

i t e r a t i v e  procedure c lose  t o  the  desired f i n a l  so lu t ion ,  

A prac t i ca l  way t o  avoid t h i s  problem is t o  start the  

A suggested 

method of doing t h i s  i s  t o  make t h e  assumption that  engine t h r u s t  I s  

a l ined  with the  veloci ty  vectcr  of t h e  a i r c r a f t .  

which is  i n  e r r o r  by the  s i z e  of t h e  angle, a lpha,  equation (19) becomes 

W:'h this assumption, 

Dm/m - T/m - g sinyo = 0 

-(g/vo)cosyo + ($/mvo)cos+ = 0 

6o - LHsin+/(mVocosYo) = o 
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These equations have t h e  followiag closed forn rolution vhich CUI 

be used as a 

solu t ion  is 

+ =  

O f  

T/m = 

s t a r t i n g  point i n  the Ilewton=l?aphson w r i t h .  The 

In order t o  solve f o r  the open loop cont ro ls  f o r  t h e  etr8ight- in  

port ion of t h e  n o d n a l  f l i g h t  path, the fOlloWing t q u r t i O M  mU8t be 

satisfied. 

equation ( 9 ) .  

They result trom making equation ( 5 )  e q u i d e a k  w 

the  Hewton-Raphson Writlmm is used t o  solve the two equations 

f o r  a and T/m. 

assumption that t b r u s t  and veloc i ty  are codirectional, th8 following 

equations can be usad t o  start t h e  iterative procedure. 

The roll angle, f#, of course, is taro. bin# the saw 

a -  

T/m 

Hotice that DH in equation 20 will have e different n m l c a l  --&e 

than DIl in equation 21. 

Raphaon i t e r a t i o n  procedure yield Yaluer vhich are vary elore to tba 

final Yalues 

These equation8 wed for startiry the Bevton- 
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Feedback Control Gains 

The purpose of  th i s  sec t ion  is t o  present a developlcnt of t h e  

so lu t ion  of t h e  l i n e a r  regula tor  problem. References 1 through 5 

all concern themselves, in part, v i t h  t h i s  problem. 

the problem is given ky  equatiocs (1 ) , ( 3  , and ( k  

A stat-ent of 

vhich are! 

r epea te i  here for convenience. . - --- 
x = f!x,u,t) . - 
5:; = A ( t ) T .  + B(t)K = [A+BK]6x 

A ( t )  and B ( t )  are defined as 
- af 

ax 
A = -  

M, Q, and R are zeigkting matrices uhic:? zust ’ce se lec ted  by t k e  

control  system designer. The problem i s  t o  f i n d  the  matrix K i n  

equation (3) which minimizes t h e  quat-at ic  performance index of 

equation (4). Following t h e  techr.;ques of references 1 snd 2, t h e  

Hamiltonian of t h e  system is 
1 - 0  l - - -T-  - w  -‘IL H = - 6~ Q6x + 2 6~ Rbu + (A6x) p + (MU)  p 2 

- 
where I; is the  vector of cos ta tes .  p is  t h e  so lu t ion  of the 

d i f f e r e n t i a l  equation 
- 

Since t h e  control  is optimal, it follows t h a t  
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or 

solving t h i s  equation for Xi, we get 

-1 T- bu = -R B p 
- 

Obviously, t h e  control  zeT@?ing matrix F. 

Combining equation (24) with equation ( 3 )  . 
-1 T- 6 x = A z - R R  B p  

- 

(24) 
1 * Eust be nonsingular. 

y i e l d s  

(25) 

Then, combining this equation v i th  equation (231, ve have t h e  

following system of equations - 

Applying the t r ansve r sa l i t y  conditions, ve ge t  the cos t a t e  vector  

p ( t )  at t h e  final time, 
- 

t f -  

The system represented i n  equation (26) has twelve states. 

there are six i n i t i a l  conditions on bx, and six f i n a l  boundary values 

Since 

on p, this system has a unique solut ion.  

If equation (26) is rewr i t ten  as 

and if ve assume that 2 is constant over a nariLl interval  of time, 

[ t  ,t+h] , then we can write the  t r a n s i t i o n  eqwtion of the  system as 

'Reference 1 shows t h a t  M, Q, and R must be symetric; that  M and Q must 
be a t  least pos i t i ve  semidefinite; and t h a t  R must be pos i t i ve  de f in i t e .  
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where 

A further assumption is m a d e  t h a t  t he  cos t a t e s  are l i n e a r l y  related 

t o  the states; t h a t  i s ,  

T h i s  assumption I s  proven t o  be t r u e  i n  reference 1. 

of  equation (27) and (3C) shows t h a t  

S l ( t f )  = M (31) 

Combining equations (281, (291, and ( 3 0 )  y i e l d s  a t r a n s i t i o n  

A comparison 

1 equation for S 

o r  

Reference 1 proves t h a t  t h i s  inverse does e x i s t .  

Using t h e  difference equation (32)  wi:h t h e  f i n a l  value of t h e  

matrix S1 given by equation (3i), we can proceed backward i n  time and 

obtain S. for all t E [ t O , t f ] .  A t  each point i n  t h e ,  it is necessary t o  
A 
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(26) through (29). 

equations (30) and (24).  

The gain matrix K(t)  is obtained by combining 

-1 T - - 
6~ = -R B S,bx(t) 

o r  

-1 T K(t)  = -R B S1 (33)  

Implement a t  ion 

The landing approach guidance scheme proposed i n  t h i s  paper 

would be implemented i n  t h e  folloving manner. 

1. For a pa r t i cu la r  nominal f l i g h t  path,  t h e  control  system 

designer, a f t e r  extensive analysis  and t e s t i n g ,  chooses weighting 

matrices M, Q, and R f o r  t h e  performance index i n  equation ( 4 ) .  

2. The state t r a j e c t o r i e s  on t h e  nominal f l i g h t  path are then 

computed using equations (10) through (18). 

3. The nominal open loop control  inputs are then computed using 

t h e  Newton-Raphson algorithm t o  solve equations (19) and (21).  This 

i t e r a t i v e  procedure is  s t a r t e d  with t h e  values given i n  equations (20) 

and (221, respectively . 
4. The Jacobian matrices A ( t )  and B ( t )  used i n  equation (3 )  a r e  

computed according t o  equations (A -1 )  and (A-2) i n  appendix A .  

(3)  represents t h e  l i nea r i za t ion  of equation (1) about t h e  nominal 

t r a j e c t o r y  and control.  

Equation 

5 .  The feedback gain matrix K i s  computed a8 a function of time 

using equations (26) through (33) .  

6. I n  t he  computer aboard t h e  a i r c r a f t  are s tored t h e  time his- 

t o r i e s  of t h e  nominal f l i g h t  path,  t h e  nominal control  inputs,  and t h e  
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feedback gains.  Alternatively,  t h e  algorithm, equations (16) and (17),  

which computes t h e  s ta te  t r a j e c t o r i e s  is stored. 

7. The a i r c r a f t ,  o r  simulated a i r c r a f t ,  i s  flown i n t o  a window; 

i.e., a region of state space which i s  'close'  t o  t h e  i n i t i a l  s t a t e s  

of t he  nominal f l i g h t  path. 

8. When t h e  plane en te r s  t h e  Jindov, it i s  switched on t o  the  

automatic landing system. It i s  assumed that t h e  aircraft is  

receiving t h e  necessary posi t ion data from t h e  ground based airport 

landing system and receives control  surface posi t ions from transducers.  

Th i s  i s  considered t i m e  zero w i t h  respect t o  t h e  nominal path. 

9. 

t h e  a i r c r a f t  safely onto t h e  nominai f l i g h t  p a t h  w e l l  before reaching 

t h e  decision a l t i t u d e .  

The control  system smoothly nu l l s  t h e  s t a t e  errors and brings 



RESULTS AND DISCUSSION 

Flight  Paths 

In t h i s  study, t h e  control  system was tested along seven 

d i f f e r e n t  nominal f l i g h t  paths.  

a l t i t u d e ,  i n i t i a l  heading angle, and i n  angle of descent. Fl ight  

paths 1, 2, and 3 are depicted i n  Figure 3. 

degree angle of descent ( f l i g h t  path angle)  and are i n i t i a l l y  headed 

north,  east, ana south, respectively.  Fl ight  path 1 i s  t h e  

easiest path t o  f l y  because i t s  i n i t i a l  a l t i t u d e  is t h e  highest  and 

the re  is more time t o  n u l l  out i n i t i a l  e r r o r s  i n  t h e  state var iables .  

Conversely, f l i g h t  path 3 i s  t h e  nost  d i f f i c u l t  s ince its i n i t i a l  

a l t i t u d e  is  150 meters below f l i g h t  path 2 and 300 ceters below 

f l i g h t  path 1. The a i r c r a f t  w k e s  a descending tLrn t o  t h e  r i g h t  

of 360, 270, and 180 degrees for f l i g h t  paths 1, 2, and 3, respect ively 

at  which point it is  headed north toward t h e  runway. 

( r o l l  ou t )  on the  path, t h e  a i r c r a f t  i s  at 100 meters alt i tude and it 

r o l l s  to a wing l e v e l  a t t i t u d e .  

toward t h e  runway. 

meter a l t i t u d e  for t h e  purpose o f  softening t h e  impact at touchdown. 

Because t h l s  simulation did not include ground e f f e c t s ,  it was 

terminated j u s t  above t h e  f lare a l t i t u d e  and off  nominal errorS 

recorded a t  t h a t  point.  

The paths d i f f e red  i n  i n i t i a l  

They a l l  have a three 

A t  t h i s  posi t ion 

It then descends i n  a s t r a i g h t  l i u e  

The flare maneuver would be executed a t  tvelve 

Fl ight  paths U, 2A, and 3A had t h e  same i n i t i a l  a l t i t u d e  and 

heading angle respect ively as f l i g h t  paths 1, 2, and 3. However, 

they had a descent angle of s i x  degrees r a t h e r  than three. These 
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f l i g h t  paths a r e  ndre d i f f i c u l t  t o  f l y  than t h e  f i r s t  three. 

of descent and r o l l  angle are about doubled and t h e  turning radius 

and f l i g h t  time are about halved. 

at 100 meters. 

than t h e  f irst  th ree  and they have less t i m e  t o  n u l l  off-nominal 

e r ro r s  . 

The rate 

The ro l lou t  a l t i t u d e  was maintained 

These f l i g h t  paths require  more severe control  inputs 

Fl ight  pa th  3B is  a var i a t ion  of 3. The i n i t i a l  a l t i t u d e  and 

ro l lou t  a l t i t u d e  were r a i sed  100 meters. This had the  e f f e c t  of 

moving t h e  h e l i x  back from t h e  runway and about doubling t h e  time 

spent on t h e  s t ra ight- in  portion of the  path. 

seven f l i g h t  paths are given i n  table 2. 

Parameters of t he  

Design Considerations 

The control  t a sk  presented here d i f f e r s  f r o m  conventional landing 

approach schemes i n  t h a t  e r r o r s  are taken w i t h  respect t o  a moving 

point i n  state space r a t h e r  t h a n  a fixed l i n e .  Thus, even i f  t he  

a i r c r a f t  were f lying on t h e  correct  h e l i c a l  path - i t h  t h e  correct  

a t t i t u d e ,  t h e  f a c t  t h a t  it was la te  o r  ea r ly  i n  time would ind ica t e  

t o  the control  system tha t  there were state e r r o r s ;  i n  this context,  

t he  proposed guidance scheme can be considered 4-D. 

a i r p o r t s ,  more precise  control of time sequencing should prove 

advantageous. 

A t  crowded 

Because the feedback gain matrix K is computed automatically i n  

a near optimum fashion, t h e  designer 's  job is t o  choose t h e  weighting 

matrices M, Q, and R of e q u a t i w  4 and then t o  evaluate t h e  subsequent 

performance of  t h e  control  jystem. I n  fact ,  t h i s  becomes an i t e r a t i v e  
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procedure vhere the  designer i s  t ry ing  t o  f ind  an optimum ce t  of  

weighting Fsranieters. Tnis t a s k  is not t r i v i a l ,  but by using 

diagonal weighting matrices,  a functiarial r e l a t ionsh ip  between t h e i r  

elements and t h e  subsequent performance can be establ ished.  

The control system was required t o  n u l l  out i n i t i a l  e r ro r s  ir 

t n e  s t a t e s ,  and t o  o f f se t  t h e  e f f ec t s  of steady crosswind&. It was a l s o  

desired t h a t  i.; not be sens i t i ve  t o  normal changes i- t h e  atmosphere 

anu x i ce r t a in t i e s  i n  t n e  a i r c r a f t ' s  a;rodynmics. Wind gus ts  and 

sensor noise were not considered i n  t h i s  study. Large i n i t i a l  s t s t e  

e r ro r s  tend t., demand l a rge  rapid control  motions. I n  order t o  avoid 

t n a ,  s ta te  e r ro r s  a r ~  weighed less  by r edwing  the elements of Q and 

control  excursions a r e  wtghed more by iricreasinq t h e  elements of R. 

iiowever, t h e  penalty f 'unctim does  not  include cont ro l  rates and t h e  

R matrix influences t n e  time in'legral ra ther  than the magnitudr qf 

control  excursion squared. Therefore, it i s  iiot unususl t c  &L; A 4c'ge 

control  excursions f o r  r e l a t ive ly  short  time with ccrsequent high 

control  rates.  I f  t h e  &? and R matrices are wel l  chosen, the  cont rc l  

system w i l l  nu l l  out t he  i n i t t n l  e r ro r s  s lov ly  i n  a manner which w i l l  

cause no passenger discomfort. 

touchdown point ,  t h e  influence of t h e  M matrix t igh tens  up t h e  ccnt ro l  

and acceptable values of f i n a l  s t a t e  e r ro r s  can be achieved. 

As t h e  a i rc r t i f t  approaches t h e  

This approach worked f i n e  u n t i l  t h e  a i r c r a f t  was subjected t L  a 

crosswind. It then became apparent t h a t  control i n  crosswinds.was a 

much m r e  s t r ingent  Yequirement and t h e t  a t i g h t e r  control  was 

necessary. I n  order t o  r x o n c i l e  t h e  two requirements: wide 

bandwidth control  f o r  crosswir.ds and narrow bandwidth control  f o r  
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large hitial errors, t w o  approaches w e r e  taken. 

were used, but rate and position limits vere placed on the contml3. 

Tliis l ead  t o  undesirable o s c i l l a t o r y  behavior, and ic some cases, 

i n s t a b i l i t y .  

p m ' i c u l a r l ~  troublesome. 

elements of Q and R t i m e  varying. 

are IOU i n i t i a i l y ,  while t h e  state e r r o r s  are large. 

F i r s t ,  high gains 

The rate l i m i t  on angle of a t t ack  seemed to be 

The second approach vas to  make the 

In t h i s  method. the feedback gains 

While t h e  large 

errors are being nulled, t he  feedback gsins are 

an& t h e  systeui is reasonably tight d e n  it approaches touchdoun. 

This second method vorkc u e l l  except that roll rate became excessive 

uhen the  aircraft rolled out  of i t s  turn. l'nis maneuver occurs at  

100 meters a l t i t u d e  vhen high feedback gains are desirable. 

proolem vas circumvented by inposing a rate i i m i t  01 roll. 

values of Q, E i ,  and M which were f i n a l l y  setsled upon are: 

increased 

This 

The 

Q = 1 /2 t t  

6x'* Q 
0 

0 

0 

0 

0 

0 

6Yi2 

0 

7 

0 

0 

0 

0 

0 0 

0 0 

6Zi2 0 

0 0 

0 0 

0 

0 

0 

0 

6Yi2  

0 

0 

0 

0 

0 

0 

6*i2 
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G 

0 

0 

0 

C - 

0 

6Yi2 

0 

3 

0 

0 

0 

0 

0 

M 
0 

0 

where the value of the elanenss %re given by 

6 x M  = 55. 

6YM 

6zM 

% 
&Ykf 

= 9 .  

= 5 .  

= 21. 

= 2.(a/180) 

N, = n/180 

0 

0 

C 

0 

-2 
6YM 

0 

0 

0 

a 

0 

0 

&12 

These weights are by no means optimally chosen. 

experimentally by using the iterative process described above. 

They are arrived at 
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There are several  cons t r a in t s  imposed upon t h e  design. To 

avoid passenger discomfort, angular rates should not exceed t en  

degrees per second and by f ede ra l  regulat ion,  r o l l  angle cannot 

exceed t h i r t y  degrees. Engine t h r u s t  can be t h r o t t l e d  between 2800 

and 28,000 pounds which correspond t o  thrust/mass r a t i o s  of . 3  and 

3. meters per second squared. Final e r r o r s  i n  t h e  states w i l l  be a 

function of how w e l l  t h e  weighting matrices are choser!, t h e  magnitude 

of  tk ie  i n i t i a l  state errors, vind veloci ty  and  d i r ec t ion ,  and of tf\e 

p a r t i c u l a r  f l i g h t  path chosen. A f t e r  t h e  wings l e v e l  maneuver t h e  

aircraft  is headed north a t  about 62 meters/second, a?d s ince t h e  

runways are normally much longer than necesszr;- f o r  t h i s  a i r c r a f t ,  

an e r r o r  i n  x of 2 62 meters is  not unreasonable. However, e r r o r s  

i n  y of greater  than 2 10 meters are unacceptable. The fact t h a t  t h e  

runvw is  normally only 50 meters r i d e  a d  t he  wing span is approxi- 

mately 30 meters make even tnat error uncomfcrtable even though some 

correctior. w i l l  be made during flare. 

f l i g h t  path angle y are best  viewed i n  terms of sink rate 2 

Errcrs  i n  ve loc i ty  V and 

(i = V s i n  y )  . This e r r o r  should be kept within 2 .7 meters/second 

and again e negative e r r o r  (slower descent) is preferrFd. Error i n  

heading should be kqpt within f i v e  degrees. 

s i z e  ca9 be nulled by a decrab maneuver. The most trouble- 

some e r r o r s  i n  t h i s  s tuQ turned out t o  be i n  y during the s ix  degree 

approaches. 

An e r r o r  of t h a t  

Representative Landing Approach 

Time h i s t o r i e s  from a representat ive f l i g h t  are shown i n  figure 4. 

The nominal curves are shown as dotted l i n e s  and t h e  simulated f l i g h t  
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Large In i t ia l  Errors and 15 Knot East Wind. 
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FIGURE 4.- Concluded. 
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88 a continuous carve. This w a s  a s i x  degree approach with nominal 

i n i t i a l  heading due east and i n i t i a l  a l t i t u d e  of 550 meters. 

s i x  states and t h ree  contra's are shown, d o n g  witn an  overview of 

t h e  x-y plane. The a i r c r a f t  started wings l e v e l  v i t h  a heading of  

80' i 10' e r r o r ) .  

over a 300 meter e r r o r  ir both x and y. 

a3cut tuenty percent. The a i r c r a f t  was near stall ,  and consequently, 

t h e  W i l e  of a t t ack  aod t h r o t t l e  setting were set high f o r  trim. 

It w a s  subjected t o  a f i f t e e n  knot constant east wind. Immediately, 

the  a i r c r a f t  ro l l ed  with soae overshoot t o  t h e  23' nominal. 

q l e  of a t t ack  was decreased and t h e  t h r o t t l e  vas cut  back. 

made t h e  a i r c r a f t  simuitarieously pitcb over ar.d increase speed 

while i n i t i a t i n g  i t s  curved descending turn t o  t h e  r i g h t .  

out at 100 meters a i t i t u d e  is apparent i n  t h e  curves of y, p s i ,  and 

phi. The e n t i r e  a2proach lasted about 82 seconds arid r o l l o u t  

occurred at around 70 seconds. The simulation was t e d x i s t e d  when 

t h e  plane reached B T ~  a l t i t u d e  of around 15  meters j u s t  above where 

the  flare would be executed. Most of t h e  notion is  smooth but roll 

angle rate def inately reaches i t s  t e n  degree per second l i m i t  and t h e  

t h r u s t  t o  mass r a t i o  s t ays  on i t s  lover  l i m i t  of . 3  (T = 2800 l b s . )  

f o r  much of t h e  run. The overshoot in r o l l  angle (-10') at r o l l o u t  

i s  undesirable, but i s  much less apparent i n  t h e  th ree  degree 

approaches. I t  could, most l i ke ly ,  be considerably reduced by making 

t h e  nominal r o l l  angle a continuous function. However, t h i s  would 

complicate (perhaps unJus t i f i ab ly )  t h e  e n t i r e  control  system. 

decision height,  tf;e a i r c r a f t  was within one second of t he  nomina. 

The 

It vas 100 meters higher than nominal and had 

The veloci ty  w a s  l o v  by 

The 

This 

The roll- 

A t  
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Final  e r ro r s  f o r  t h i s  f l i g h t  are -52m.,  3 ~ . ,  -.6n., 3 m./s., -lo, 

-5’, and -. 5rii./’s. f o r  x, y,  2, V, y ,  $, and i, respect ively.  

Representative Feedback Gains 

The elements of t h e  feedback ga in  matrix,  K ,  f o r  f l i g h t  path 

2A are shown i n  Figure 5 .  

increase witn t i m e  due t o  t h e  time var ia t ion  of t h e  weighting 

matrices Q and R .  Some of  t h e  gains  have a pronounced increase in 

t h e  last several  seconds of f l i g h t  due t c  the  influence of t h e  M 

matrix. 

K(2 ,2 ) ,  and K(3,3). 

t e n  of t h e  eighteen gains are zero o r  can be considered zero. 

course, t h e  more of  these  elements t h a t  are z e r t  o r  near zero,  t h e  

e a s i e r  it is  t o  implement t h e  control  system. In  order t o  determine 

t h e  influence of a pa r t i cu la r  gain,  one a s s u e s  a l a r g e  reasonable 

e r ro r  i n  +,he s ta te  and then ca lcu la tes  t h e  r e su l t i ng  change i n  t h e  

control .  If t h e  change i s  in s ign i f i can t ,  then t h e  element can be 

considered zero. For example, an e r r o r  of t h ree  meters i n  Z near 

t h e  end of t h e  f l i g h t  would only change t h e  thrust/mass r a t i o  by .06. 

Whereas an e r ro r  i n  x of 60 meters would cause t h e  ra t io  t o  chenge by 

1.2. Since these a r e  both large reasonable e r r o r s  at t h e  termination 

of f l i g h t ,  t h e  element K(3,3)  should be considered zero. 

approach, it can  be seen t h a t  af ter  r o l l o u t ,  thrust/maas ra t io  is a 

function on ly  of x and V ,  roll angle is a function of only y and UJ, 

and angle of a t tack  is a funct ion of x,  V, Z ,  and y.  Tlnis p a r t i a l  

decoupling i s  usefu l  t o  t h e  designer i n  t h e  i terative process of 

The nagnitude of the gains ,  i n  generai ,  

This can be seen i n  severa l  of t h e  eiements including K ( l , l ) ,  

During t h e  s t ra ight - in  port ion of t h e  approach, 

O f  

U s i n g  t h i s  
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choosing t h e  weighting mHtrices. 

elements of K c&? be considered zero tkroughout t h e  ent i re  f l ight . .  

They are  K(2 ,3) ,  K ( 2 , b ) ,  K ( 2 , 5 ) ,  K(3 ,5) ,  and K(3,6). 

remaining 1 3  gains would have t o  :.c stored i n  t he  on-board compdter. 

Eleven points  with l i n e a r  in te rpola t ion  c o d d  eas i ly  approximate any 

of  these functions.  Some of them could be f i t t e u  by l o w  order 

polynomials i n  time which would requi re  even less  parameter storage.  

It appears t h a t  t h e  e n t i r e  gain matrix and nominal path .culd be 

s tored i n  l e s s  than two hundr d words of storage.  This number 20ul . l  

probably be reruced but it i s  important t o  rcal ize  t h a t  any para- 

meter change i n  t h e  nominal s ta te  t r a j ec to ry  w i L  e f f ec t  these gains .  

Each a i r p o r t  using t h i s  system wodd prJbably have se-zeral d i f f e ren t  

nominal approaches these  wodd a l s o  probably d i f f e r  among a i r p o f s .  

To be p rac t i ca l  then, t h e  computer must hsbe access t o  t h e  correct  set 

of  parameters out of marIy possible  a l t e rna t ive  sets .  Several 

possible  ways of  accomplishlng t h i s  are: 

ApplyinE t h e  same retsoning,  f i v e  

Each of the 

1) All necessary parameter sets are s tored  in an on-board 

mass s torage device. 

I’he pa r t i cu la r  set of parameters needed is c d c u l a t e d  

on t h e  airborne compute_* p r io r  t o  landing approach. 

The parameter set i s  transmitted from t h e  a i r p o r t  t o  

t h e  on-board computer when the  landing approach 13 

assigned. 

The feedback gains  could possibly be expressed 8s 

analytic functions cf time and ;he f i v e  primary 

parameters of  t h e  nominal f l i g h t  path. 

2) 

3 )  

4) 
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The feedback gains of Figure 5 were calculated using t h e  

weighting matrices 1-1, Q, and li as giver. atove. 

i n  t h e  landing approach shown i n  Figure &. 

matrices and r e su l t i ng  g a i r s  appears adeqxate for t h i s  f l i g h t  path 

and control task.  

The gains were used 

This choice of ueiLr.:ing 

System Performance 

Tne control  system w a s  t e s t e d  on each of t h e  seven landing 

approaches described in Table 2. Re:;ult.; from t h e  f i r s t  s i x  f l igh:  

paths are given i n  Table 3 throilgh Table 8. F l i g h t  path 3B resul.:s 

are given i n  Table 9. 

simulated landing agproaches. 

subJected t o  a constant vind of i 5  knots magnitude from a d i rec t ion  

Each of these seven t a b l e s  represent 25 

Dn each approach, t h e  aircraft vas 

The direct ion changed 1.01 each approach =.a it was generated as 

a random variable with \illifan diStribUtiGn betveer, -180 degrees and 

+180 degrees. 

c rect ions with no pa r t i cu la r  d i r ec t ion  being favored. Each approach 

was s t a r t e d  with o f f  nominal e r ro r s  i n  all state var iables .  %ese 

i n i t i a l  e r r o r s  were generated as random variables .  They were nor- 

m l i y  (Gaussian] d i s t r ibu ted  w i t h  zero mean. The standard deviations 

selected for  t h e  s i x  state e r r o r s  i n  x, y ,  2, V ,  y,  9 ,  respectively,  

were l o o m . ,  lOGm., 30n., 31c./s.,  - ', and 3'. Each f l i g h t  F t h  had a 

d i s t i n c t  randam sequence of sets of & n i t i d  state errors. 

Each f l i g h t  path had i t s  own random sequence of vind 

The reason f o r  employing randomness i n  t h e  control  t a sk  was t h a t  

t h e  system showed t h a t  it could be tuned t o  a ,ar t icular  task.  

Originally,  only 90' crcsswinds were used because they were thought 

t o  be a worse case. Then it was discovered that winds from t h e  aft 



quarter occasionally gave more trouble.  Because t h i s  aircraft i s  

r e i a t i v e l y  clean; i.e., high lift t o  drag r a t i o ,  t hese  winds were par- 

t ic ; r lar ly  d i f f i c u l t  on t h e  s t eep  approaches. Also, c e r t a i n  coE;bizations 

of i n i t i a l  e r r o r s  were easier t o  correct  than others.  Therefore, a 

s t rong wind rand- directed was used and t h e  aircraft vfs i n i t i a l i z e d  

w i t h  l a r g e  random off-nocinai e r ro r s .  

such t h a t  t k e  wings were l e v e l  ( 9  = 0 )  and t h e  a i r c r a f t  vas trimmed. 

The controls  vere i n i t i a l l y  set 

Table 3 presents t he  dath f o r  t he  25 landing 3pproaches along 

The first s i x  l i n e s  give the  measured s t a t i s t i c s  f l i g h t  path m e .  

of the i n i t i a l  state errors. They are t h e  rean, standard i ev ia t ion ,  

and range of i n i t i a l  e r r o r s  given for each =tate. These s t a t i s t i c s  

3iffer frori their  ideal values because they represent 9 subset of a 

very long pseudo randm sequecce which has t h e  selected s t a t i s t i c s .  

The next t k e e  l i n e s  of t h e  table represent t h e  I n i t i a l  off-nominal 

val .es of t h e  controls.  

va r i a t ion  i n  i n i t i a l  trim values. 

s ince  t h e  approach a l v a y s  starts w i n g s  l e v e l  r a t h e r  than ro l l ed  ovzr 

at 12.2O. The next sect ion of t h e  t a b l e  shows how w e l l  t h e  control  

system did  i t s  vork. 

Jus t  above t h e  flare a l t i t u d e .  

These are not r e a l i y  e r ro r s ,  but show a 

Roll angle i s  a constant -12.2O 

It  gives t h e  f i n a l  off-nominal e r ro r s  taken 

S t a t i s t i c s  are given on t h e  s i x  

s ta te  var iables  and sfnk rate, Z. As can be seen, t h e  control  system 

worked very w e l l  on f l i g h t  path one. 

i t se l f  apparent in f i n a l  e r r o r s  i n  y and 2. 

runs,  t h e  approaching aircraft w a s  never more than .7 meters from 

t h e  center l i n e  of t h e  runwey and t h e  f i n a l  e r r o r  i n  a l t i t u d e  w a s  

never g rea t e r  than 1.1 meters. 

meters/second, t h e  maximum e r r o r  in f i n a l  a l t i t u d e  corresponds t o  

Poor performance usually makes 

For these twenty-five 

Since t h e  nominal sink rate i s  3.24 



M e a n  Variable Standard Deviation R a n g e  

-6.9 
-13 .O 
-4.1 

.6 

.2 
- 5  

.1 
-12.2 
-.05 

INITIAL OFF-NOMINAL ERRORS 

64.7 
84.5 
32.1 
2.8 
.8 

3 -1 

1.4 
0 

.14 

(-2.1, 2.7) 

(-.36, .20) 

F I N A L  OFF-NOMINAL ERRORS (AT DECISION ALTITUDE) 

-9.3 
.4 
-0 
.2 

-.O - .1 
-.01 

7.8 
-2 
.6 
- 5  
- 3  
.1 - 34 

(-21.2, -1.0) 
( . 3 ,  -7 )  
(- .6,  1.1) 
(- .3 ,  . 9 )  
(-05, -4) 
( - . 2 ,  -.1) 
( 4 7 ,  .44) 

EXPREIE OFF-NOMINAL EXCURSIONS DURING EACH FLIGHT 

4 .5  
-.4 
.08 

.4  
7.9 . 00 

- 5  
2-3 

.18 

EXTREME CONTROL RATE DURING EACH F'LIGHT 

1 . 5  
3 .1  
.ll 

~~~ ~ 

NUMBER OF UNACCEPTABLE FLIGHTS = 0 

TABLE 3.- Stat ist ical  Data From Flight tath 1. 
25 Landing Approaches, y=3', Zt3.24 m/s, Vw=15 knots, 
JI W =U[-18o0, 1 8 0 ~ 1 ,  tf=211.5s, hf=13.7m, xf=-26h. 



Variable Mean Standard Deviation Range 

IBITIAL OFF-ICOMINAL ERRORS 

8.4 
10.5 

2 . 3  
.2 
.2 

- .9 

.1 
-12.2 

-.06 

118.1 
93 -9 
21.5 
2.7 

-9 
2.2 

1 - 3  
0 

.14 

(-292., 236.) 
(-1990, 179.1 
(-27., 48.) 
(-4.8, 6.9) 
(-1.4, 2.9) 
(-5.7, 3-01 

(-2.9, 2.8) 

(-.46, -19) 

FINAL OFF-NOKINAL ERRORS (AT DECISION ALTITUDE) 

-8.9 
- 5  

-.1 
. 2  

-.O 
-.l 
-.02 

6.8 
- 2  
-6 
. 3  
- 2  
-1 
-29 

(-22.9, -.4) 
(.2, .8) 
(-07, 1.2) 
(- .3,  .9) 
(-*5, .4) 
(-.2, .o) 
(-.48, -44) 

E m E I E  OFF-NOI*fXNAL EXCURSIONS DURING EACH FLIGHT 

2-9  
4.2 
-06 

3.2 
.1 - 17 

EXTREME CONTROL RATE DURING EACH F'LIGHT 

NUMBER OF UNACCEFTABLE FLJGHTS = 0 

TABLE 4.- S ta t i s t ica l  Data From Fl ight  Path 2. 
25 Landing Approaches, y=3O, f,=3.24 m / s  , V#15 knots, 
$,,=U[-18o0, 180°], tf=165.s, hf=14.6m, xf=-279.m 



Variable Mean Standard Deviation Range 

IHITIAL OF "O!.!INAL ERRORS 

11.1 
-12.8 
-2.5 
-.O 
-.l 
.4 

-.l 
-12.2 

-.02 

95.2 
101: .1 
30.8 
2.1 
1.1 
2-5 

1.0 
0 
I20 

(-2.4, 1.8) 

(--35, -29) 

FINAL OFF-lr'0bIXlU.L ET.RORS (AT DECISIOK ALTITUDE) 

-8.8 
.6 
-1 
.1 
.o 

-.l 
-06 

9.3 
- 3  
- 5  
.6 
-2 
.1 
-26 

(-26.0, 2.2) 
( - 0 ,  1 . 3 )  
( - - 5 ,  1-01 
(-07, 1.2)  
( - .2 ,  -4) 
(-.3, -.o) 
(--25, -53) 

EX"RE34E OFF-IUO!XINAL EXCLXSXO!iS 9URING EACH FLIGHT 

2.8 
7 - 2  

-08 

-.2 
8.3 
-.oo 

3.1 
.2 
-19 

EXTREME COWlBOL RATE DURING EXCH FLICm 

1.8 
* 9  
-13 

NUMBER OF UNACCEFTABLE FLIGHTS = 0 

TABLE 5.- Statist ical  Data From Flight Path 3 .  
25 Landing Approaches, y=?O,  2=3.24 m/s, Vv=15 knots 
$~;u[-180~, 1 8 0 ~ 1 ,  tf=118.5s, hf-15.5m, xf=-29h. 



Variable Me;m Stmidard Deviation Range 

IBITIAL OFF-NOMINAL ERRORS 

27.4 
13-3 
-7.7 - .1 
-1 

- . 3  

112.7 
106.0 
26.7 
3.6 
1.1 
3-3 

(-219., 276. ) 
(-224., 237.) 

(-7.2, 6 .4)  
(-1.5, 2.4) 
(-6.8, 6.3) 

(-6O., 40) 

FINAL OFF-NOMINAL ERRORS (AT DECISION ALTITUDE) 

-10.0 9.4 (-23.6. 8-31 
8 -1 
-.6 

.o 

.1 
-1 -8 

.ll 

-7 
-6 
-5 
-2  
.2 
-25 

El(TREME OFF-NOVJHAL EXCLIESIOIOS DURIHG EAOfi FLIGH" 

19.3 
-17 

.1 
-10.0 

.01 

.1 
-14 

(19.0, 19.5) 
(-017, -35) 

El[TREME CONTROL RATE DURING EACH FLIGHT 

2.1 
0 
.10 

(-3.4, 3.3) 

( 4 8 ,  .21) 

lquMBER OF UNACCFSTABLE FLIGHTS = 0 

TABLE 6.- Statistical Data From Flight Path lA. 
25 Landing Approaches. 
$w=u[ -180°, 180' J , t ,-105.5s, hf=19. 5m, xf=-l8QI 

y=6', b 6 . 2 8  m/s, Vv=15 knots 



! 
Variable 

I 

i x (d 
Y 19)  1 

I Y (del31 
i v (111:s) 
1 Q (dog) 

a (de&) 

T/n (n/s 

i 

4 (del31 2 

x (m) 
Y (A) 

2 (m) 
v ( d s )  
Y (dee) 

z ( d s )  
9 (deg: 

a (deg) 
4 (deg) 
T/m ( m / s 2 )  

J 

NUMBER OF UNACCEPTABLE FLIGHTS = 5 
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Mean Standard Deviation Range 

I N I T I A L  OFF-NOMINAL ERRCRS 

-9.7 89.2 (-235-, 147.) 
20.8 75 -4 (-143., 192.) 
1.2 26.2 (-ha, 56.) 

-.O .8 (-2.1, 1.4) 
-3 3.4 (-6.9, 6.2) 

- .3  2- 5 (-3.5, 6-91 

-.9 1.7 (-3.6, 3.2) 

(-.17, -24) - -07 . il 
-23 3 0 

F I N A L  OFF-NOCINAL ERRCRS (AT DECISIOH ALTITUDE) 

-4.9 3.0 (-25.4, 7.9) 
8.4 1 . 3  (6.5, 10.6) 
-.4 1 .o (-1.7, 1-31 
-.3 -5 (-1.1, .9) 

.o - 3  (-.4, -4) 

I O 1  - 25 (-038, 033) 
-1.7 .3 (-2.1, -1.3) 

EXTREME OFF-NOMINAL EXCURSIOMS DURING EACH FLIGHT 

3.0 3.5 (-4.3, 6.5) 
13.3 - 3  (12.8, 14.1) 
.09 a 1 5  ( 4 6 ,  .26) 

EXTRR4E CONTROL RATE DURING EACH FLIGHT 

-.l 2.0 (-3.3, 3.9) 
-10.0 0. 
-.01 .11 (-.17, -21) 

TABLE 7.- Statist ical  Data From Flight Path 2A. 
25 Landing Approaches. 
$,tv[-18oo, 180'1, tf=82.5s, hf=15.3m, xf=-yb6.m. 

y=6', b6.28 m/s, V =15 knots 



Mean Variable Standard Deviation Range 

-35.6 
-22.2 

-1 
.1 

- .3  

-5.2 

-1.1 
-23 * 3 
-.07 

INITIAL OFF-NOblINAL ERRORS 

88.4 
89.5 
36.3 
2.5 

09 
2.8 

1.3 
0. 
-09 

(-225., 129 
(-266.. 81. 

(-6.0, 4.2) 
(-1.3, 2.3) 

(-61., 54.) 

(-5.4, 4.7) 

FINAL OFF-NOMINAL ERRORS (AT DECISION ALTITUDE) 

-21.5 
ll.? 

- . 5  
1.1 
.1 

-2.1 
-17 

14.7 
5.5 

. 7  
1.0 

.2 
1.1 

.25 

(-51-7, 2-41 
(-6.1, 20.3) 
(-1.8, 1.2) 
(-.8, 2.8) 
(-04, * 3 )  
(-4.0, 1.4) 
(-.22, .57) 

EXTREME OFF-NOMINAL EXCURSIONS DURING EACH FLIGHT 

- 5  
21.7 

-19 

4.2 
1 .o 
.21 

IWJREMB CONTROL RATE DURING EACH F'LIGHT 

1.1 
-10.0 

.02 

1.8 
0. 
.09 

(-2.0, 5.1) 

(-*15, -151 
- ~~ 

NUMBER OF UNACCEPTABLE FLIGHTS 14 

TABLE 8.- Statistical Data From Flight Ptth 3A.  
25 Landing Approaches. 
$v=U[-1800, 1801, t f- -59.0s, hf=15.m, xf=-14&. 

y=6O, 296.28 m/s , V *15 knot5 
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about one t h i r d  of a second i n  time. T d s  same observation can be 

made with regard t o  x s ince nominal 

second and t h e  maximum final e r r o r  i n  x f o r  the tventy-five runs 

was 21.2 meters. The t h i r d  section of t h e  table indicates  how much 

control  was needed t o  f l y  tne  a i r c r a f t .  

approaches, t h e  l a rges t  off-nominal control  excursion is iden t i f i ed  

whether it be pos i t i ve  o r  negative. 

run w a s  not included s ince  the  i n i t i a l  off-nominal values of at 

least r o l l  angle would always be extreme f o r  the  f l i g h t  and it 

would mask t h e  desired information. 

extreme f o r  angle of a t t ack  was 4 .5  degrees greater than the nominal 

and t h e  extrene varied over t h e  twenty-five f l i g h t s  from 3.3 degrees 

to  5.7 degrees above nominal. 

information on extreme control rates f o r  each run. These ere 

important mainly i n  how they a f f ec t  passenger comfort. 

statist ics given are on t h e  extremes of  each flight inc lu l ing  the 

i n i t i a l  t r ans i en t .  

which v r e  unacceptable because one or more of the  constraints ,  

disci:s*;ed. in t h e  sectix? sn des ign  consideration, was violated.  

i s  approximately 62 meters/ 

For each of t h e  tvtnty-five 

The in i t i - a l  t r a n s i e n t  of eacii 

So, f o r  example, t h e  average 

The next sect ion of t h e  table gives 

The 

Final ly ,  t h e  tab:e gives t h e  number of f l ight6 

.4s cap. Lz seen from examining t h e  t ab le s ,  t h e  control  system 

was ? d t e  e f fec t ive  an f l i g h t  p a t t s  1, 2, and 3. The l a r g e s t  f i n d  

e r r o r s  for these 75 approaches was 1.3 meters i n  y and 1.2 meters 

i n  2. 

excursion and control  rates were moderate. 

There were no unacceptable f l i g h t s  and both control  

The next t h ree  tables, 6 through 6 ,  show t h e  results for the 

s i x  degree approaches. As can be seen, the control  systclE did not 
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do as w e l l  on these approaches. 

and r o l l  angle tended t o  have l a r g e r  off-nominal excursions. 

Although there were no unacceptable f l i g h t s  on path lA, t h e  mean 

f i n a l  e r r o r  

d i d  not execute t h e  wings l e v e l  maneuver fast enough, it tended t o  

go o f f  t o  t h e  r igh t  ( e a s t ) ,  and then it would r o l l  t o  tte l e f t  i n  

order to  ge t  back on the  cen te r l ine .  

t he re  was only about 13 seconds from i n i t i a t i o n  of ro l lou t  t o  t h e  

conclusion of the  simulation. Since the  va r i a t ion  of t h e  error i s  

small (-71, performance on t h i s  f l i g h t  path could probably be 

improved by s t a r t i n g  the  r o l l o u t  a f e w  seconds ear ly .  

f a c t ,  what p i l o t s  have been observed t o  do when f ly ing  t h i s  approach. 

On f l i g h t  path 2A, performance is s l i g h t l y  worse and f i v e  of these 

had f i n a l  e r r o r s  i n  y which were g rea t e r  than t en  meters and 

consequently were unacceptable. The var ia t ion i n  f i n a l  y error was 

again small, indicat ing t h a t  a s l i g h t  adjustment i n  t h e  f l i e h t  path 

could possibly bring the  e r r o r s  within plus o r  minus 2.5 meters. 

Final ly ,  on f l i g h t  path 3A, t h e  control  system proved t o  be 

completely inadequate with 1 4  of the  25 f i i g h t s  having final e r r o r s  

i n  y which were g rea t e r  than t e n  meters. 

choice of weights, s p e c i f i c a l l y  6y 

on the  six degree f l i g h t  paths.  

t o  be one of time. Fl ight  time decreases monotcnically from 212 

seconds on f l ight  path 1 t o  around 60 seconds on f l i e h t  path 3A. 

appears that t h e  s i x  degree approaches do not have enough time t o  

null out i n i t i a l  errors and t h e  adverse e f f e c t  of crosswinds. I n  

Final  e r r o r s  i n  y and Jt were l a r g e r ,  

i n  y was a d i s t i u j i n g  8.1 meters. Because t h e  a i r c r a f t  

On these six degree approaches, 

This is, i n  

It  is possible  t h a t  another 

and 6yH, might improve performance Q 
However, t h e  p r inc ip l e  problem seem8 

It 



order t o  support t h i s  premise, f l i g h t  path 3A w a s  modified such t h a t  

i n i t i a l  a l t i t u d e  was 500 meters instead of 400, and r o l l o u t  vas 

accomplished at 200 mete:'a instead of 100. 

labeled 3. 

i s  reported i n  T a b l e  9. 

9 and Table 8, t h e  exact same sequences of i n i t i a l  e r r o r s  and wind 

d i r ec t ions  were used. The f l i g h t  time f o r  3S3 was about 15  seconds 

longer than 3A, and all of +h i s  w a s  added t o  t h e  s t ra ight- in  port ion 

of the f l i g h t .  The marked improvement i n  performance of 3B over 3A 

i s  apparent when Table 9 is  compared with Table 8. 

approach exceeded the  allowable l i m i t  of t e n  rceters f i n a l  error i n  y; 

whereas on 3A, 14 approaches exceeded it. 

seems t o  be caused by t h e  increased f l y i n g  t i m e ,  it may fo l lov  t h a t  

doubling t h e  init ial  nominal a l t i t u d e  and ro l lou t  a l t i t u d e  on t h e  

s i x  degree approaches would lead t o  performance comparable t o  that 

experienced on the th ree  degree approaches. 

This new f l i g h t  path is 

Its parameters are given i n  Table 2 and its performance 

I n  order t o  f a c i l i t a t e  comparison of Table 

On 3B, no 

Since t h i s  improvement 

Final ly ,  t h e  control  system was t e s t e d  f o r  s e n s i t i v i t y  t o  

uncertaint ies  i n  t h e  aerodynamics of t h e  a i r c r a f t  and for no& 

variatior! i n  the  atmosphere. 

I n i t i a l  e r r o r s  and wind d i r ec t ion  were not varied.  Twenty-five 

simulation runs were made, each with a d i f f e ren t  atmospheric deas i ty  

function and each with a d i f f e r e n t  set of aerodynamic parameters. 

results of these f l i g h t s  are given i n  Table 10. A l l  six aircrsft 

parameters were allowed t o  vary randomly. The values given i n  Table 1 

were used BB t h e  mean and four percent of those values were used as 

t h e  standard deviation. The d i s t r ibu t ion  was normal. This r e su l t ed  

A particular landing approach was used. 

The 
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Mean Variable Standard Deviation Range 

INITIAL OFF-NOMINAL ERRORS 

-35 6 
-22.2 
-5.2 

.1 

.1 
-.3 

-.9 
-23.3 - "7 

88.4 
89.5 
36.3 
2.5 
-9 

2.8 

1.3 
0. 

-09 

(-225. a 129.1 
(-266., 81 . )  
(9610, 54.) 
( -6 .0,  4.2) 
(-1.3, 2 .3)  
(-5.4, 4.7) 

FINAL OFF-N ' *I ERRORS (AT DECISION ALTITUDE) 

-16.2 14.2 
4 .8  2.1 
- -7 . 5  

.8 .6 

.o .2 
-.a 03 

.12 . 3  

EXTREME OFF-NOMIKAL EXOJRSIONS DURING EACH FLIGHT 

09 
21.6 

.18 

1.1 
-10.0 

.O 

4 . 1  
.8 
19 

EXTREME COlQTROL RATE DURING EACH FLJGHT 

1 .8  
0 .  

.1 

HUhfBER OF UNACCEPTABLE FLIGHTS = 0 

TABLE 9 . -  S t a t i e t i c d  Data Ram F l i g h t  Path 3. 
25 Landing Approaches. 
Jtt =U[-180°, 180'1, t f=75.0s ,  h f ~ 1 4 . 7 ~ ~ ~  xf=-Y3%. 

y=60r b 6 . 2 8  mls, V 115 kaotr 



Variable Mean Standard Deviation Range 

INITIAL OFF-NOMINAL ERRORS 

186.0 
157 09 
-24 -0 

1 . 4  
-.2 
2.1 

-.6 
-12.2 

.01 

FINAL OFF-NOMINAL ERRORS (AT DECISION ALTITUDE) 

-2.0 
03 

1.3 
-.2 

.4  
-.l 

.r(3 

8.4 
.1 
.8 
* 5  
.1 
.o 
.1 

E X T R m  OFF-NOMINAL EXCURSIONS DURING EACH F L I G H T  

4 -7 
4 . 3  
-.14 

.8 

.3 
*I5 

EXTREME CONTROL RATE DURING EACH FLJGHT 

-1.0 
8.9 
-.lG 

- 3  
.O 
.01 - 

lJuMBER O F  UNACCEPTABLE FLIGHTS - 0 
TABLE 10,- Statist ical  Data From Flight Path 2 With Variations in the 

Aerodynamic Parameters. 
25 Landing Approachm. y=3', 2~3.24 m/s, V p l 5  knatr, 
$,,,-170', t =165., h =14.6m, ~~t-279.a. 
of Approxdately 2 fO$ in Alrc.-af% Parameters and 5 5s 
in Air Densit: a 

Random variation 



i n  a random va r i a t ion  i n  these  parameters of about 210%. 

densi ty ,  as described i n  equation 7,  '.;as also given random vat ia t ioL.  

The multiplying coe f f i c i en t ,  1.22, of t h a t  equation was allowed t o  

vary normally w i t h  mean 1 .22  and standard deviation of" 

resul ted i n  a random va r i a t ion  of air  density of about 25% for any 

par t i cu la r  a l t i t u d e .  These var ia t ions seemed only t o  prbpagatc i n t o  

t h e  f i n a l  e r ro r s  i n  x, 2, and V and i n t o  the  extreme control 

excursions in  angle of a t tack.  

f i n a l  a l t i t u d e  ctwses concern. It. va r i e s  between .b and 2.4 neter;. 

Since t h e  sink r a t e  i s  Aout 3.24 met.ers/second, it follows t h a t  

A i r  

0244. This 

O f  these,  only t h e  variation i n  t h e  

LI;S corresponds t o  an e r r o r  of about .6 seconds . . tim. The 

control  sqsten! appears t o  handle these zgrmal variati0r.s and 

uncertaint ies  91 Ate well. 



This paper describes an application of l inear  q s t i r a l  

regulator theory t o  a nonlinear simulation of an aircraft perfonuing 

a helical lR;din# approach. 

developed and are linearized (time varying coeff'iciemtrr) about a 

quasi-steady helical  f l igh t  path. 

are given as explicit functions of t b e  and a numerical method for 

determining the constant control inputs is presented. 

system t o  t h e  d n a l  state trajectories is posed as a regulator problea 

with t h e  varying w e i g h t i n g  katrices i n  the cost functional. 

of solving for the feedback gain matrix is reviewed. 

then implacnted in  a simulation of b e i n g  737-100, and system perfor- 

mance vas rcasurcd for seven dis t inc t  approaches including flight 

path angles (desr nt  angles) of three and s i x  degrees. 

approacn, the a i rc raf t  va8 subJect t o  large errors in initial d u e s  

of state variables and t o  strong steady crosswinds. 

also tested for sensit ivity t o  normal variations i n  atmosphere and 

t o  reasonable uncertainties i n  the parametric description of the  

ai rcraf t .  

The nonlinear equations of m t i o n  are 

The norinal state tiwe histories 

Control of the 

A wthod 

This theory is 

On each 

The system was 

Sta t i s t ica l  data on 200 simulated landings ia  presented. 

The control system performed very w e l l  on all the three dcgrtt 

approaches and was reasonably insensitive LO changes in the 

atlrospherc and t o  parametric chaqe? in  the  a i rc raf t  ol01 1. 

PerforpDLocc, which we8 measured i 1 ;t ms of terminal errors, 

violation of design constraints, and passenger c M o r t ,  was not 

60 
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nearly 8s good on t h e  sir degree approaches. 

more diff icul t  t o  execute since descent rate u d  roll angle are 

These approaches are 

libfed and the radius of the helix is  halved. On the most 

d i f f i cu l t  of these s i x  degree aFproaches, the  t o t a l  flight t h @  vas 

about s ixty seconds, and periorrrnace vas definitely unacceptable. 

Zvidence is presented t o  support the  contention that t o t a l  fli&ht 

time is the c r i t i c a l  factor and t ha t  performance on the sir degree 

paths could be greatb- Improved by starting the approach trorp a 

higher alt i tude.  This hypothesis needs t o  be further tested if 

six degree approaches are a requir-ent. 

me control system design method used i n  this study is relatively 

s t ra ight  forvard and is easy t o  implement vith the aid of a mdem 

eorriputer. The only diff icul ty  is in  cboosing the  weighting matrices 

for t he  cost functional. 

weights should be the varying for the  particular control t a sk  

studied. 

t ion which includes both actuators and sensors and has s ix  dcgne  

of freedom dynamics before being implemented on the aircraft. 

It was concluded i n  t h i s  paper that the 

This method should 3e extended to  the more complex simula- 
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APPgloDIX A 

JACOBIM MATFUCEs USED IB THE 
LIHEARIWTIOIO OF THE AIRCRAPT DYI?AMICS 

The aircraft d y n d c s  were linearized about a nominal 

state trajectory and nominal control t i m e  history. 

done i n  order to apply linear optimal regulator theory to the 

computation of the feedback gains. A s  is evident i n  equation 

This vas 

(3)  of the text, the Jacobian matrices 

a? A(t) f and 

are needed. They are 

0 

0 

0 

- [E /m + ( t / m )  s i n  a 

T cos a + - cos @ /mV aa aL 1 

0 

0 

0 

0 

0 

0 

a 

- s i n  a/V 

0 
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a? 
ax' 
- =  

0 

c 

0 

0 

0 

0 

0 

0 
- 

cos y cos II, 

cos y sin II, 

sin y 

u>/ (mv 1 

( T / d  sin a - g cds 'y - (L/m) cos Cp 

- V sin y cos rl, 

- V sin y sin 9 

-V cos y sin $I 

v cos y cos I# 

v cos y 0 

g =os Y 0 

(g/v) sin Y 0 

0 2 
(L /m)  sin 4 sin y / (V cos y)  

An assumption that atmospheric density is constant over the range 

of altitude considered is incorporated into these equations. 

assumption is discussed in the text. 

linear simulation which uses the feedback gains. 

This 

It is not made in the non- 
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